Jake Vanderplas
Zeljko Ivezic
Andrew Connolly
This figure is based on data presented in figures 3-4 of Parker & Ivezic et al (2008). A similar figure appears in the book “Statistics, Data Mining, and Machine Learning in Astronomy”, by Ivezic, Connolly, Vanderplas, and Gray (2013).
Running this code requires astroML, a lightweight python package which
can be quickly installed using pip install astroML
. See
http://astroML.github.com for more information. AstroML will
automatically download and cache the required dataset to
$HOME/astroML_data
.
import numpy as np
from matplotlib import pyplot as plt
from astroML.datasets import fetch_moving_objects
from astroML.plotting.tools import devectorize_axes
def black_bg_subplot(*args, **kwargs):
"""Create a subplot with black background"""
kwargs['axisbg'] = 'k'
ax = plt.subplot(*args, **kwargs)
# set ticks and labels to white
for spine in ax.spines.values():
spine.set_color('w')
for tick in ax.xaxis.get_major_ticks() + ax.yaxis.get_major_ticks():
for child in tick.get_children():
child.set_color('w')
return ax
def compute_color(mag_a, mag_i, mag_z, a_crit=-0.1):
"""
Compute the scatter-plot color using code adapted from
TCL source used in Parker 2008.
"""
# define the base color scalings
R = np.ones_like(mag_i)
G = 0.5 * 10 ** (-2 * (mag_i - mag_z - 0.01))
B = 1.5 * 10 ** (-8 * (mag_a + 0.0))
# enhance green beyond the a_crit cutoff
G += 10. / (1 + np.exp((mag_a - a_crit) / 0.02))
# normalize color of each point to its maximum component
RGB = np.vstack([R, G, B])
RGB /= RGB.max(0)
# return an array of RGB colors, which is shape (n_points, 3)
return RGB.T
#------------------------------------------------------------
# Fetch data and extract the desired quantities
data = fetch_moving_objects(Parker2008_cuts=True)
mag_a = data['mag_a']
mag_i = data['mag_i']
mag_z = data['mag_z']
a = data['aprime']
sini = data['sin_iprime']
# dither: magnitudes are recorded only to ± 0.01
mag_a += -0.005 + 0.01 * np.random.random(size=mag_a.shape)
mag_i += -0.005 + 0.01 * np.random.random(size=mag_i.shape)
mag_z += -0.005 + 0.01 * np.random.random(size=mag_z.shape)
# compute RGB color based on magnitudes
color = compute_color(mag_a, mag_i, mag_z)
#------------------------------------------------------------
# set up the plot
fig = plt.figure(figsize=(10.5, 5), facecolor='k')
fig.subplots_adjust(left=0.08, right=0.95, wspace=0.2,
bottom=0.1, top=0.9)
# plot the color-magnitude plot
ax = black_bg_subplot(121)
ax.scatter(mag_a, mag_i - mag_z,
c=color, s=1, lw=0, edgecolors=color)
# uncomment to convert SVG points to pixels
#devectorize_axes(ax, dpi=400)
ax.plot([0, 0], [-0.8, 0.6], '--w', lw=2)
ax.plot([0, 0.4], [-0.15, -0.15], '--w', lw=2)
ax.set_xlim(-0.3, 0.4)
ax.set_ylim(-0.8, 0.6)
ax.set_xlabel('Optical Color (a*)', color='w')
ax.set_ylabel('Near-IR Color (i - z)', color='w')
# plot the orbital parameters plot
ax = black_bg_subplot(122)
ax.scatter(a, sini,
c=color, s=1, lw=0, edgecolors=color)
# uncomment to convert SVG points to pixels
#devectorize_axes(ax, dpi=400)
ax.plot([2.5, 2.5], [-0.02, 0.3], '--w')
ax.plot([2.82, 2.82], [-0.02, 0.3], '--w')
ax.set_xlim(2.0, 3.3)
ax.set_ylim(-0.02, 0.3)
ax.set_xlabel('Semi-major Axis (AU)', color='w')
ax.set_ylabel('Sine of Orbital Inclination', color='w')
# label the plot
text_kwargs = dict(color='w', fontsize=14,
transform=plt.gca().transAxes,
ha='center', va='bottom')
ax.text(0.25, 1.01, 'Inner', **text_kwargs)
ax.text(0.53, 1.01, 'Mid', **text_kwargs)
ax.text(0.83, 1.01, 'Outer', **text_kwargs)
# Saving the black-background figure requires some extra arguments:
fig.savefig('asteroids.pdf',
facecolor='black',
edgecolor='none')
plt.show()